Estamos realizando la búsqueda. Por favor, espere...
1448
37
174
31752
4651
2689
362
417
Abstract: In this article, we consider variational inequalities arising, e.g., in modelling diffusion of substances in porous media. We assume that the media fills a domain ?? of ? n with n???3. We study the case where the number of cavities is large and they are periodically distributed along a (n???1)-dimensional manifold. ? is the period while ?? is the size of each cavity with ????1; ? is a parameter that converges towards zero. Moreover, we also assume that the nonlinear process involves a large parameter ??? with ??=?(????1)(n???1). Passing to the scale limit, and depending on the value of ?, the effective equation or variational inequality is obtained. In particular, we find a critical size of the cavities when ??=???=?(n???1)/(n???2). We also construct correctors which improve convergence for ????(n???1)/(n???2).
Autoría: Gómez D., Lobo M., Pérez M., Shaposhnikova T.,
Fuente: Applicable Analysis, 2013, 92(2), 218-237
Editorial: Gordon and Breach
Año de publicación: 2013
Tipo de publicación: Artículo de Revista
DOI: 10.1080/00036811.2011.602635
ISSN: 0003-6811,1563-504X,1026-7360
Url de la publicación: https://www.tandfonline.com/doi/abs/10.1080/00036811.2011.602635
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
DELFINA GOMEZ GANDARILLAS
MIGUEL LOBO HIDALGO
MARIA EUGENIA PEREZ MARTINEZ
SHAPOSHNIKOVA, T.A.
Volver