Search

Searching. Please wait…

Detalle_Publicacion

First-principles modeling of the thermoelectric properties of SrTiO3/SrRuO3 superlattices

Abstract: Using a combination of first-principles simulations, based on density functional theory and Boltzmann?s semiclassical theory, we have calculated the transport and thermoelectric properties of the half-metallic twodimensional electron gas confined in single SrRuO3 layers of SrTiO3/SrRuO3 periodic superlattices. Close to the Fermi energy, we find that the semiconducting majority-spin channel displays a very large in-plane component of the Seebeck tensor at room temperature, S ? 1500 ?V/K, and the minority-spin channel shows good in-plane conductivity, ? = 2.5 (m cm)?1. However, we find that the total power factor and thermoelectric figure of merit for reduced doping is too small for practical applications. Our results support that the confinement of the electronic motion is not the only thing that matters to describe the main features of the transport and thermoelectric properties with respect the chemical doping, but the shape of the electronic density of states, which in our case departs from the free-electron behavior, is also important. The evolution of the electronic structure, electrical conductivity, Seebeck coefficient, and power factor as a function of the chemical potential is explained by a simplified tight-binding model. We find that the electron gas in our system is composed by a pair of one-dimensional electron gases orthogonal to each other. This reflects the fact the physical dimensionality of the electronic system (1D) can be even smaller than that of the spacial confinement of the carriers (2D).

Other publications of the same journal or congress with authors from the University of Cantabria

 Authorship: García-Fernández P., Verissimo-Alves M., Bilc D.I., Ghosez P., Junquera J.,

 Fuente: Physical Review B - Condensed Matter and Materials Physics, 2012, 86(8), 085305

Publisher: American Physical Society

 Publication date: 08/08/2012

No. of pages: 8

Publication type: Article

 DOI: 10.1103/PhysRevB.86.085305

ISSN: 1098-0121,1550-235X,2469-9950,2469-9969

 Spanish project: FIS2009-12721-C04-02

 European project: info:eu-repo/grantAgreement/EC/FP7/228989/EU/Engineering Exotic Phenomena at Oxide Interfaces/OXIDES/

Publication Url: https://doi.org/10.1103/PhysRevB.86.085305

Authorship

MARCOS VERISSIMO ALVES

BILC, DANIEL I.

GHOSEZ, PHILIPPE