Search

Searching. Please wait…

Sustainable and tunable Mg/MgO plasmon-catalytic platform for the grand challenge of SF6 environmental remediation

Abstract: Sulfur hexafluoride (SF6) is one of the most harmful greenhouse gases producing environmental risks. Therefore, developing ways of degrading SF6 without forming hazardous products is increasingly important. Herein, we demonstrate for the first time the plasmon-catalytic heterogeneous degradation of SF6 into nonhazardous MgF2 and MgSO4 products by nontoxic and sustainable plasmonic magnesium/magnesium oxide (Mg/MgO) nanoparticles, which are also effective as a plasmon-enhanced SF6 chemometric sensor. The main product depends on the excitation wavelength; when the localized surface plasmon resonance (LSPR) is in the ultraviolet, then MgF2 forms, while visible light LSPR results in MgSO4. Furthermore, Mg/MgO platforms can be regenerated in few seconds by hydrogen plasma treatment and can be reused in a new cycle of air purification. Therefore, this research first demonstrates effectiveness of Mg/MgO plasmon-catalysis enabling environmental remediation with the concurrent functionalities of monitoring, degrading, and detecting sulfur and fluorine gases in the atmosphere.

 Fuente: Nano Letters. 2020, 20, 5, 3352?3360

 Publisher: American Chemical Society

 Publication date: 01/04/2020

 No. of pages: 9

 Publication type: Article

 DOI: 10.1021/acs.nanolett.0c00244

 ISSN: 1530-6984,1530-6992

 Spanish project: PGC2018-096649-B-100

 Publication Url: https://doi.org/10.1021/acs.nanolett.0c00244

Authorship

GIANGREGORIO, MARÍA MICHELA

BROWN, APRIL S.

LOSURDO, MARÍA