Estamos realizando la búsqueda. Por favor, espere...
1551
37
171
26547
4223
2557
339
Abstract: In this paper, a general theoretical study, from the perspective of the algebraic geometry, of the untrimmed bisector of two real algebraic plane curves is presented. The curves are considered in C2, and the real bisector is obtained by restriction to R2. If the implicit equations of the curves are given, the equation of the bisector is obtained by projection from a variety contained in C7, called the incidence variety, into C2. It is proved that all the components of the bisector have dimension 1. A similar method is used when the curves are given by parametrizations, but in this case, the incidence variety is in C5. In addition, a parametric representation of the bisector is introduced, as well as a method for its computation. Our parametric representation extends the representation in Farouki and Johnstone (1994b) to the case of rational curves.
Fuente: Computer Aided Geometric Desig, june 2016
Editorial: Elsevier
Fecha de publicación: 23/06/2016
Nº de páginas: 19
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.cagd.2016.06.004
ISSN: 0167-8396,1879-2332
Proyecto español: MTM2011-25816-C02-01 ; MTM2011-25816-C02-02
Url de la publicación: http://dx.doi.org/10.1016/j.cagd.2016.06.004
Consultar en UCrea Leer publicación
MARIO ALFREDO FIORAVANTI VILLANUEVA
SENDRA, J. RAFAEL
Volver