Estamos realizando la búsqueda. Por favor, espere...


Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes

Abstract: We consider marked empirical processes indexed by a randomly projected functional covariate to construct goodness-of-fit tests for the functional linear model with scalar response. The test statistics are built from continuous functionals over the projected process, resulting in computationally efficient tests that exhibit root-n convergence rates and circumvent the curse of dimensionality. The weak convergence of the empirical process is obtained conditionally on a random direction, whilst the almost surely equivalence between the testing for significance expressed on the original and on the projected functional covariate is proved. The computation of the test in practice involves calibration by wild bootstrap resampling and the combination of several p-values, arising from different projections, by means of the false discovery rate method. The finite sample properties of the tests are illustrated in a simulation study for a variety of linear models, underlying processes, and alternatives. The software provided implements the tests and allows the replication of simulations and data applications.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Fuente: Ann. Statist.Volume 47, Number 1 (2019), 439-467

Editorial: Institute of Mathematical Statistics

 Año de publicación: 2019

Nº de páginas: 29

Tipo de publicación: Artículo de Revista

 DOI: 10.1214/18-AOS1693

ISSN: 0090-5364,2168-8966

Proyecto español: MTM2014-56235-C2-2-P ; MTM2017-86061-C2-2-P ; MTM2013-41383-P ; MTM2016-76969-P

Url de la publicación: https://doi.org/10.1214/18-AOS1693