Buscar

Estamos realizando la búsqueda. Por favor, espere...

Automated classification of breast pathology using local measures of broadband reflectance

Abstract: We demonstrate that morphological features pertinent to a tissue's pathology may be ascertained from localized measures of broadband reflectance, with a mesoscopic resolution (100-?m lateral spot size) that permits scanning of an entire margin for residual disease. The technical aspects and optimization of a k-nearest neighbor classifier for automated diagnosis of pathologies are presented, and its efficacy is validated in 29 breast tissue specimens. When discriminating between benign and malignant pathologies, a sensitivity and specificity of 91 and 77% was achieved. Furthermore, detailed subtissue-type analysis was performed to consider how diverse pathologies influence scattering response and overall classification efficacy. The increased sensitivity of this technique may render it useful to guide the surgeon or pathologist where to sample pathology for microscopic assessment.

 Autoría: Laughney A.M., Krishnaswamy V., Garcia-Allende P.B., Conde O.M., Wells W.A., Paulsen K.D., Pogue B.W.,

 Fuente: Journal of Biomedical Optics, 2010, 15(6), 066019

 Editorial: Society of Photo-optical Instrumentation Engineers (SPIE)

 Fecha de publicación: 01/11/2010

 Nº de páginas: 12

 Tipo de publicación: Artículo de Revista

 DOI: 10.1117/1.3516594

 ISSN: 1083-3668,1560-2281

 Url de la publicación: https://doi.org/10.1117/1.3516594

Autoría

LAUGHNEY, ASHLEY M.

KRISHNASWAMY, VENKATARAMANAN

PILAR BEATRIZ GARCIA ALLENDE

WELLS, WENDY A.

PAULSEN, KEITH D.

BRIAN W. POGUE