Estamos realizando la búsqueda. Por favor, espere...


Single-image multi-parametric representation of optical properties through encodings to the HSV color space

Abstract: The visualization of 2D clinical data often relies on color-coded images, but different colormaps can introduce cognitive biases, impacting result interpretation. Moreover, when using color for diagnosis with multiple biomarkers, the application of distinct colormaps for each parameter can hinder comparisons. Our aim was to introduce a visualization technique that utilizes the hue (H), saturation (S), and value (V) in a single image to convey multi-parametric data on various optical properties in an effective manner. To achieve this, we conducted a study involving two datasets, one comprising multi-modality measurements of the human aorta and the other featuring multiple parameters of dystrophic mice muscles. Through this analysis, we determined that H is best suited to emphasize differences related to pathology, while V highlights high-spatial-resolution data disparities, and color alterations effectively indicate changes in chemical component concentrations. Furthermore, encoding structural information as S and V within the same image assists in pinpointing the specific locations of these variations. In cases where all data are of a high resolution, H remains the optimal indicator of pathology, ensuring results' interpretability. This approach simplifies the selection of an appropriate colormap and enhances the ability to grasp a sample's characteristics at a single glance.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Fuente: Applied Sciences, 2024, 14(1), 155

Editorial: MDPI

 Año de publicación: 2024

Nº de páginas: 12

Tipo de publicación: Artículo de Revista

 DOI: 10.3390/app14010155

ISSN: 2076-3417

 Proyecto español: PID2019-107270RB-C21