Buscar

Estamos realizando la búsqueda. Por favor, espere...

Numerical valuation of two-asset options under jump diffusion models using Gauss-Hermite quadrature

Abstract: In this work a finite difference approach together with a bivariate Gauss-Hermite quadrature technique is developed for partial-integro differential equations related to option pricing problems on two underlying asset driven by jump-diffusion models. Firstly, the mixed derivative term is removed using a suitable transformation avoiding numerical drawbacks such as slow convergence and inaccuracy due to the appearance of spurious oscillations. Unlike the more traditional truncation approach we use 2D Gauss-Hermite quadrature with the additional advantage of saving computational cost. The explicit finite difference scheme becomes consistent, conditionally stable and positive. European and American option cases are treated. Numerical results are illustrated and analyzed with experiments and comparisons with other well recognized methods.

 Fuente: Journal of Computational and Applied Mathematics, 2018, 330, 822-834

 Editorial: Elsevier

 Fecha de publicación: 01/03/2018

 Nº de páginas: 25

 Tipo de publicación: Artículo de Revista

 DOI: 10.1016/j.cam.2017.03.032

 ISSN: 0377-0427,1879-1778

 Proyecto español: MTM2013-41765-P

 Url de la publicación: https://doi.org/10.1016/j.cam.2017.03.032

Autoría

EL FAKHARANY, MOHAMED

COMPANY ROSSI, RAFAEL