Buscar

Estamos realizando la búsqueda. Por favor, espere...

Chemical and physical ionic liquids in CO2 capture system using membrane vacuum regeneration

Abstract: Carbon Capture Utilization and Storage technologies are essential mitigation options to reach net-zero CO2 emissions. However, this challenge requires the development of sustainable and economic separation technologies. This work presents a novel CO2 capture technology strategy based on non-dispersive CO2 absorption and membrane vacuum regeneration (MVR) technology, and employs two imidazolium ionic liquids (ILs), [emim][Ac] and [emim][MS], with different behavior to absorb CO2. Continuous absorption-desorption experiments were carried out using polypropylene hollow fiber membrane contactors. The results show the highest desorption behavior in the case of [emim][Ac], with a MVR performance efficiency of 92% at 313 K and vacuum pressure of 0.04 bar. On the other hand, the IL [emim][MS] reached an efficiency of 83% under the same conditions. The MVR technology could increase the overall CO2 capture performance by up to 61% for [emim][Ac] and 21% for [emim][MS], which represents an increase of 26% and 9%, respectively. Moreover, adding 30%vol. demonstrates that the process was only favorable by using the physical IL. The results presented here indicate the interest in membrane vacuum regeneration technology based on chemical ILs, but further techno-economic evaluation is needed to ensure the competitiveness of this novel CO2 desorption approach for large-scale application.

 Autoría: Vadillo J.M., Díaz-Sainz G., Gómez-Coma L., Garea A., Irabien A.,

 Fuente: Membranes, 2022, 12(8), 785

 Editorial: MDPI

 Fecha de publicación: 15/08/2022

 Nº de páginas: 15

 Tipo de publicación: Artículo de Revista

 DOI: 10.3390/membranes12080785

 ISSN: 2077-0375

 Proyecto español: PID2019-108136RB-C31