Buscar

Estamos realizando la búsqueda. Por favor, espere...

 Detalle_Publicacion

Non-contact thermal and acoustic sensors with embedded artificial intelligence for point-of-care diagnostics

Abstract: This work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to analyzing acoustic signals for quantifying coughing episodes. The research integrates diverse data capture technologies to analyze them collectively, considering their temporal evolution and physical attributes, aiming to extract statistically significant relationships among various variables for valuable insights. The study delineates two distinct aspects: cough detection employing a microphone and a neural network, and thermal sensors employing a calibration curve to refine their output values, reducing errors within a specified temperature range. Regarding control units, the initial implementation with an ESP32 transitioned to a Raspberry Pi model 3B+ due to neural network integration issues. A comprehensive testing is conducted for both fever and cough detection, ensuring robustness and accuracy in each scenario. The subsequent work involves practical experimentation and interoperability tests, validating the proof of concept for each system component. Furthermore, this work assesses the technical specifications of the prototype developed in the preceding tasks. Real-time testing is performed for each symptom to evaluate the system?s effectiveness. This research contributes to the advancement of non-invasive sensor technologies, with implications for healthcare applications such as remote health monitoring and early disease detection.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Autoría: Rodríguez-Cobo L., Reyes-Gonzalez L., Algorri J.F., Díez-del-Valle Garzón S., García-García R., López-Higuera J.M., Cobo A.,

 Fuente: Sensors, 2024, 24(1), 129

Editorial: MDPI

 Año de publicación: 2024

Nº de páginas: 19

Tipo de publicación: Artículo de Revista

 DOI: 10.3390/s24010129

ISSN: 1424-8220

 Proyecto español: PID2019-107270RB-C21

Autoría

LUIS RODRIGUEZ COBO

LUIS RAFAEL REYES GONZALEZ

SARA DIEZ DEL VALLE GARZON

ROBERTO GARCIA GARCIA