Search

Searching. Please wait…

Exploring pressure effects on metallic nanoparticles and surrounding media through plasmonic sensing

Abstract: The sensing capabilities of gold nanorods under high-pressure conditions were investigated in methanol-ethanol mixtures (up to 13 GPa) and in water (up to 9 GPa) through their optical extinction. The longitudinal SPR band of AuNR exhibits a redshift with pressure which is the result of two main competing effects: compression of the conduction electrons which increases the bulk plasma frequency (blueshift) and increase in the solvent density (redshift). The variation in de SPR peak wavelength allows us to estimate the bulk modulus of the gold nanoparticles with a precision of 10 % and to obtain analytical functions providing the pressure dependence of the refractive index of water in three phases: liquid, ice VI and ice VII. Furthermore, the SPR band shows abrupt jumps at the liquid to ice phase VI and ice phase VII transitions, which are in accordance with the first-order character of these transitions.

Other conference communications or articles related to authors from the University of Cantabria

 Authorship: Martín-Sánchez C., Seibt S., Barreda-Arguëso J.A., Rodríguez F.,

 Congress: AIRAPT International Conference on High Pressure Science and Technology (27º : 2019 ; Río de Janeiro)

 Publisher: Institute of Physics

 Year of publication: 2020

 No. of pages: 10

 Publication type: Comunicación a Congreso

 DOI: 10.1088/1742-6596/1609/1/012009

 ISSN: 1742-6588,1742-6596

 Spanish project: PGC2018-101464-B-I00

 Publication Url: https://doi.org/10.1088/1742-6596/1609/1/012009

Authorship

CAMINO MARTIN SANCHEZ

SEIBT, S.

JOSE ANTONIO BARREDA ARGÜESO