Estamos realizando la búsqueda. Por favor, espere...


Scattering searches for dark matter in subhalos: neutron stars, cosmic rays, and old rocks

Abstract: In many cosmologies dark matter clusters on subkiloparsec scales and forms compact subhalos, in which the majority of Galactic dark matter could reside. Null results in direct detection experiments since their advent four decades ago could then be the result of extremely rare encounters between the Earth and these subhalos. We investigate alternative and promising means to identify subhalo dark matter interacting with standard model particles: (1) subhalo collisions with old neutron stars can transfer kinetic energy and brighten the latter to luminosities within the reach of imminent infrared, optical, and ultraviolet telescopes; we identify new detection strategies involving single-star measurements and Galactic disk surveys, and obtain the first bounds on self-interacting dark matter in subhalos from the coldest known pulsar, PSR J2144-3933; (2) subhalo dark matter scattering with cosmic rays results in detectable effects; (3) historic Earth-subhalo encounters can leave dark matter tracks in Paleolithic minerals deep underground. These searches could discover dark matter subhalos weighing between gigaton and solar masses, with corresponding dark matter cross sections and masses spanning tens of orders of magnitude. © 2022 authors. Published by the American Physical Society.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Autoría: Bramante J., Kavanagh B.J., Raj N.,

 Fuente: Physical Review Letters, 2022, 128, 231801

Editorial: American Physical Society

 Año de publicación: 2022

Tipo de publicación: Artículo de Revista

 DOI: 10.1103/PhysRevLett.128.231801

ISSN: 0031-9007,1079-7114