Buscar

Estamos realizando la búsqueda. Por favor, espere...

Blind testing of shoreline evolution models

Abstract: Beaches around the world continuously adjust to daily and seasonal changes in wave and tide conditions, which are themselves changing over longer time-scales. Different approaches to predict multi-year shoreline evolution have been implemented; however, robust and reliable predictions of shoreline evolution are still problematic even in short-term scenarios (shorter than decadal). Here we show results of a modelling competition, where 19 numerical models (a mix of established shoreline models and machine learning techniques) were tested using data collected for Tairua beach, New Zealand with 18 years of daily averaged alongshore shoreline position and beach rotation (orientation) data obtained from a camera system. In general, traditional shoreline models and machine learning techniques were able to reproduce shoreline changes during the calibration period (1999?2014) for normal conditions but some of the model struggled to predict extreme and fast oscillations. During the forecast period (unseen data, 2014?2017), both approaches showed a decrease in models? capability to predict the shoreline position. This was more evident for some of the machine learning algorithms. A model ensemble performed better than individual models and enables assessment of uncertainties in model architecture. Research-coordinated approaches (e.g., modelling competitions) can fuel advances in predictive capabilities and provide a forum for the discussion about the advantages/disadvantages of available models.

 Autoría: Montaño J., Coco G., Antolínez J.A.A., Beuzen T., Bryan K.R., Cagigal L., Castelle B., Davidson M.A., Goldstein E.B., Ibaceta R., Idier D., Ludka B.C., Masoud-Ansari S., Méndez F.J., Murray A.B., Plant N.G., Ratliff K.M., Robinet A., Rueda A., Sénéchal N., Simmons J.A., Splinter K.D., Stephens S., Townend I., Vitousek S., Vos K.,

 Fuente: Scientific reports 10, Article number: 2137 (2020)

 Editorial: Nature Publishing Group

 Año de publicación: 2020

 Nº de páginas: 10

 Tipo de publicación: Artículo de Revista

 DOI: 10.1038/s41598-020-59018-y

 ISSN: 2045-2322

 Url de la publicación: https://doi.org/10.1038/s41598-020-59018-y

Autoría

MONTAÑO, JENNIFER

COCO, GIOVANNI

JOSE ANTONIO ALVAREZ ANTOLINEZ

BEUZEN,TOMAS

BRYAN, KARIN R.

CASTELLE, BRUNO

DAVIDSON, MARK A.

GOLDSTEIN, EVAN B.

IBACETA, RAIMUNDO

IDIER, DÉBORAH

LUDKA, BONNIE C

MASOUD-ANSARI, SINA

MURRAY, A. BRAD

PLANT, NATHANIEL G.

RATLIFF, KATHERINE M.

ROBINET, ARTHUR

ANA CRISTINA RUEDA ZAMORA

SÉNÉCHA, NADIA

SIMMONS, JOSHUA A.

SPLINTER, KRISTEN D.

STEPHENS, SCOTT

TOWNEND, IAN

VITOUSEK, SEAN

VOS, KILIAN